A Knowledge-Based Cooperative Differential Evolution Algorithm for Energy-Efficient Distributed Hybrid Flow-Shop Rescheduling Problem
نویسندگان
چکیده
Due to the increasing level of customization and globalization competition, rescheduling for distributed manufacturing is receiving more attention. In meantime, environmentally friendly production becoming a force be reckoned with in intelligent industries. this paper, energy-efficient hybrid flow-shop problem (EDHFRP) addressed knowledge-based cooperative differential evolution (KCDE) algorithm proposed minimize makespan both original newly arrived orders total energy consumption (simultaneously). First, two heuristics were designed used cooperatively initialization. Next, three-dimensional knowledge base was employed record information carried out by elite individuals. A novel DE three different mutation strategies generate offspring. local intensification strategy further enhancement exploitation ability. The effects major parameters investigated extensive experiments out. numerical results prove effectiveness each specially-designed strategy, while comparisons four existing algorithms demonstrate efficiency KCDE solving EDHFRP.
منابع مشابه
Multi-objective Differential Evolution for the Flow shop Scheduling Problem with a Modified Learning Effect
This paper proposes an effective multi-objective differential evolution algorithm (MDES) to solve a permutation flow shop scheduling problem (PFSSP) with modified Dejong's learning effect. The proposed algorithm combines the basic differential evolution (DE) with local search and borrows the selection operator from NSGA-II to improve the general performance. First the problem is encoded with a...
متن کاملA multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation
Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...
متن کاملA Hybrid Genetic Algorithm for the Flow-Shop Scheduling Problem
This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local s...
متن کاملA Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem
The job shop scheduling problem JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study...
متن کاملA Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processes
سال: 2023
ISSN: ['2227-9717']
DOI: https://doi.org/10.3390/pr11030755